Zero Jordan product determined algebras

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan product determined points in matrix algebras

Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 6 invertible. We say that A ∈ Mn(R) is a Jordan product determined point if for every R-module X and every symmetric R-bilinear map {·, ·} : Mn(R)×Mn(R) → X the following two conditions are equivalent: (i) there exists a fixed element w ∈ X such that {x, y} = w whenever x ◦ y = A, x, y ∈ Mn(R); (ii) there exists ...

متن کامل

Zero Triple Product Determined Matrix Algebras

Let A be an algebra over a commutative unital ring C. We say that A is zero triple product determined if for every C-module X and every trilinear map {·, ·, ·}, the following holds: if {x, y, z} 0 whenever xyz 0, then there exists a C-linear operator T : A3 −→ X such that {x, y, z} T xyz for all x, y, z ∈ A. If the ordinary triple product in the aforementioned definition is replaced by Jordan t...

متن کامل

On strongly Jordan zero-product preserving maps

In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of  Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...

متن کامل

on strongly jordan zero-product preserving maps

in this paper, we give a characterization of strongly jordan zero-product preserving maps on normed algebras as a generalization of  jordan zero-product preserving maps. in this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly jordan zero-product preserving maps are completely different. also, we prove that the direct p...

متن کامل

Zero Product Preservers of C*-algebras

Let θ : A → B be a zero-product preserving bounded linear map between C*-algebras. Here neither A nor B is necessarily unital. In this note, we investigate when θ gives rise to a Jordan homomorphism. In particular, we show that A and B are isomorphic as Jordan algebras if θ is bijective and sends zero products of self-adjoint elements to zero products. They are isomorphic as C*-algebras if θ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2015.01.035